If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-18t-48=0
a = 1; b = -18; c = -48;
Δ = b2-4ac
Δ = -182-4·1·(-48)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{129}}{2*1}=\frac{18-2\sqrt{129}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{129}}{2*1}=\frac{18+2\sqrt{129}}{2} $
| 132=m•11 | | 14x=16*21 | | 5y–6=3y–12 | | (4x)(4)=36 | | –9t=–10+7(t−10) | | 7x-29+5x-1=180 | | (8x)(8)=144 | | 5x=4x–10 | | (7w-1)=104 | | 11y-9=+23 | | 21x-2x=133 | | 7-b+9=23 | | x/2x+2=6. | | 3y-2=5y-18 | | a/14a=14. | | 5(b-2)=3(b+4) | | y/9y+3=30. | | 3x+10°=180° | | 5x-2(-4+2x)=11 | | (-8,2);m=2 | | 9x=9x27 | | a/3a=6. | | x-5=x20 | | 20+3m=38 | | 65=26(n) | | 6^x=62 | | x=8=48 | | 13+a–27=119 | | 2•(x+5)=X+16 | | (3a-4)°=47° | | 13x-16=-107 | | -13x16=-107 |